Obsidian LaTeX Suite 魔法手册

Math Mode

TriggerReplacementOptionsExamples
lm$$0$tA
Lm$$0$tA
dm$$\n$0\n$$tAw
Dm$$\n$0\n$$tAw
beg\begin{$0}\n$1\n\end{$0}mA
quad\quadmA

Greek Letters

TriggerReplacementOptionsDescriptionExamples
alpha\alphamAGreek letter alphaα\alpha
@A\alphamAGreek letter alpha (alternative trigger)
beta\betamAGreek letter betaβ\beta
@B\betamAGreek letter beta (alternative trigger)
chi\chimAGreek letter chiχ\chi
@C\chimAGreek letter chi (alternative trigger)
gamma\gammamAGreek letter gammaγ\gamma
Gamma\GammamAGreek letter Gamma (uppercase)Γ\Gamma
delta\deltamAGreek letter deltaδ\delta
de\lta\deltamAGreek letter delta (alternative trigger with typo)
Delta\DeltamAGreek letter Delta (uppercase)Δ\Delta
De\lta\DeltamAGreek letter Delta (uppercase, alternative trigger with typo)
eps\epsilonmAGreek letter epsilonϵ\epsilon
@E\epsilonmAGreek letter epsilon (alternative trigger)
vareps\varepsilonmAGreek letter varepsilonε\varepsilon
: e\varepsilonmAGreek letter varepsilon (alternative trigger)
zeta\zetamAGreek letter zetaζ\zeta
@Z\zetamAGreek letter zeta (alternative trigger)
theta\thetamAGreek letter thetaθ\theta
Theta\ThetamAGreek letter Theta (uppercase)Θ\Theta
kappa\kappamAGreek letter kappaκ\kappa
@k\kappamAGreek letter kappa (alternative trigger)
lambda\lambdamAGreek letter lambdaλ\lambda
Lambda\LambdamAGreek letter Lambda (uppercase)Λ\Lambda
mu\mumAGreek letter muμ\mu
@m\mumAGreek letter mu (alternative trigger)
rho\rhomAGreek letter rhoρ\rho
varrh\varrhomAGreek letter varrhoϱ\varrho
@r\rhomAGreek letter rho (alternative trigger)
sigma\sigmamAGreek letter sigmaσ\sigma
Sigma\SigmamAGreek letter Sigma (uppercase)Σ\Sigma
omega\omegamAGreek letter omegaω\omega
@o\omegamAGreek letter omega (alternative trigger)
Omega\OmegamAGreek letter Omega (uppercase)Ω\Omega
xi\ximAGreek letter xiξ\xi
Xi\XimAGreek letter Xi (uppercase)Ξ\Xi
pi\pimAGreek letter piπ\pi
Pi\PimAGreek letter Pi (uppercase)Π\Pi
tau\taumAGreek letter tauτ\tau
upsl\upsilonmAGreek letter upsilon (alternative trigger)υ\upsilon
Upsl\UpsilonmAGreek letter Upsilon (uppercase, alternative trigger)Υ\Upsilon
phi\phimAGreek letter phiϕ\phi
Phi\PhimAGreek letter Phi (uppercase)Φ\Phi
varphi\varphimAGreek letter varphiφ\varphi
psi\psimAGreek letter psiψ\psi
Psi\PsimAGreek letter Psi (uppercase)Ψ\Psi
eta\etamAGreek letter etaη\eta
iota\iotamAGreek letter iotaι\iota
([^\\\\])(${GREEK}| ${SYMBOL})`[[00]][[11]]`rmA

Insert space after greek letters and symbols, etc

TriggerReplacementOptionsDescriptionExamples
\\(${GREEK} | ${SYMBOL} | ${SHORT_SYMBOL})([A-Za-z])\[[0]] [[1]]rmAMatches Greek symbols or short symbols followed by a letter, adds brackets and separates them.
\\(${GREEK} | ${SYMBOL}) sr\[[0]]^{2}rmAMatches Greek or symbol followed by "sr", replaces with superscript 2.λ2\lambda^{2}
\\(${GREEK} | ${SYMBOL}) cb\[[0]]^{3}rmAMatches Greek or symbol followed by "cb", replaces with superscript 3.λ3\lambda^{3}
\\(${GREEK} | ${SYMBOL}) rd\[[0]]^{\$0}$1rmAMatches Greek or symbol followed by "rd", replaces with a dynamic superscript of the first argument.λrd\lambda^{rd}
\\(${GREEK} | ${SYMBOL}) hat\hat{\[[0]]}rmAMatches Greek or symbol followed by "hat", applies the \hat{} formatting.λ^\hat{\lambda}
\\(${GREEK} | ${SYMBOL}) dot\dot{\[[0]]}rmAMatches Greek or symbol followed by "dot", applies the \dot{} formatting.λ˙\dot{\lambda}
\\(${GREEK} | ${SYMBOL}) bar\bar{\[[0]]}rmAMatches Greek or symbol followed by "bar", applies the \bar{} formatting.λˉ\bar{\lambda}
\\(${GREEK} | ${SYMBOL}) vec\vec{\[[0]]}rmAMatches Greek or symbol followed by "vec", applies the \vec{} formatting.λ\vec{\lambda}
\\(${GREEK} | ${SYMBOL}) tilde\tilde{\[[0]]}rmAMatches Greek or symbol followed by "tilde", applies the \tilde{} formatting.λ~\tilde{\lambda}
\\(${GREEK} | ${SYMBOL}) und\underline{\[[0]]}rmAMatches Greek or symbol followed by "und", applies the \underline{} formatting.λ\underline{\lambda}
\\(${GREEK}),\\.\boldsymbol{\[[0]]}rmAMatches Greek followed by a comma and period, applies the \boldsymbol{} formatting.λ\boldsymbol{\lambda}
\\(${GREEK})\\.,\boldsymbol{\[[0]]}rmAMatches Greek followed by a period 和 comma, applies the \boldsymbol{} formatting.λ\boldsymbol{\lambda}

Operations

TriggerReplacementOptionsDescriptionExamples
te\text{$0}mMatches "te" and wraps the matched text with \text{} formatting.te tab\text{te tab}
text\text{$0}mAMatches "text" and wraps the matched text with \text{} formatting.text\text{text}
bf\mathbf{$0}mAMatches "bf" and wraps the matched text with \mathbf{} for bold math font.b\mathbf{b}
sr^{2}mAMatches "sr" and replaces with superscript 2 (^{2}).2^{2}
cb^{3}mAMatches "cb" and replaces with superscript 3 (^{3}).3^{3}
tp^{$0}$1mAMatches "tp" and applies a dynamic superscript (^{}), followed by the first captured group.n^{n}
sb_{$0}$1mAMatches "sb" and applies a subscript (_{}), followed by the first captured group.n_{n}
sts_\text{$0}rmAMatches "sts" and wraps the text with a subscript and \text{} formatting.text_\text{text}
sqrt\sqrt{ $0 }$1mAMatches "sqrt" and wraps the matched text inside \sqrt{} for square root notation.2\sqrt{ 2 }
//\frac{$0}{$1}$2mAMatches "//" and replaces with a fraction using \frac{numerator}{denominator}.nd\frac{n}{d}
rm\mathrm{$0}$1mAMatches "rm" and wraps the matched text with \mathrm{} for Roman (upright) font.r\mathrm{r}
star^{*}mAMatches "star" and replaces with superscript asterisk (^{*}).^{*}
trace\mathrm{Tr}mAMatches "trace" and replaces with \mathrm{Tr} (trace operator).Tr\mathrm{Tr}
det\detmAMatches "det" and replaces with \det (determinant operator).det\det
Re\mathrm{Re}mAMatches "Re" and replaces with \mathrm{Re} (Real part operator).Re\mathrm{Re}
Im\mathrm{Im}mAMatches "Im" and replaces with \mathrm{Im} (Imaginary part operator).Im\mathrm{Im}
Tr\operatorname{Tr}mAMatches "Tr" and replaces with \operatorname{Tr} (trace operator in an operator font).Tr\operatorname{Tr}
bar\bar{$0}$1mAMatches "bar" and wraps the matched text with \bar{} for overline formatting.eˉ\bar{e}
hat\hat{$0}$1mAMatches "hat" and wraps the matched text with \hat{} for hat (caret) symbol formatting.e^\hat{e}
dot\dot{$0}$1mAMatches "dot" and wraps the matched text with \dot{} for dot notation (used in derivatives).e˙\dot{e}
ddot\ddot{$0}$1mAMatches "ddot" and wraps the matched text with \ddot{} for double dot notation (used for second derivatives).e¨\ddot{e}
vec\vec{$0}$1mAMatches "vec" and wraps the matched text with \vec{} for vector notation.e\vec{e}
tilde\tilde{$0}$1mAMatches "tilde" and wraps the matched text with \tilde{} for tilde formatting (used for various purposes like approximations).e~\tilde{e}
und\underline{$0}$1mAMatches "und" and wraps the matched text with \underline{} for underlining.e\underline{e}
TriggerReplacementOptionsDescriptionPriority
([a-zA-Z]),\\.\mathbf{[[0]]}rmAMatches a letter followed by a comma 和 period, applies bold formatting.
([a-zA-Z])\\.,\mathbf{[[0]]}rmAMatches a letter followed by a period and comma, applies bold formatting.
([A-Za-z])(\\d)[[0]]_{[[1]]}rmAAuto letter subscript: Matches a letter followed by a digit 和 applies subscript notation.-1
([A-Za-z])_(\\d\\d)[[0]]_{[[1]]}rmAMatches a letter followed by a two-digit subscript and applies subscript notation.
\\hat{([A-Za-z])}(\\d)\hat{[[0]]}_{[[1]]}rmAMatches a letter with a hat and a digit, applies hat and subscript formatting.
\\\\mathbf{([A-Za-z])}(\\d)\mathbf{[[0]]}_{[[1]]}rmAMatches a letter in boldface followed by a digit, applies boldface and subscript formatting.
\\\\vec{([A-Za-z])}(\\d)\vec{[[0]]}_{[[1]]}rmAMatches a letter with vector notation followed by a digit, applies vector and subscript formatting.
([a-zA-Z])bar\bar{[[0]]}rmAMatches a letter followed by "bar", applies overline formatting.
([a-zA-Z])hat\hat{[[0]]}rmAMatches a letter followed by "hat", applies hat formatting.
([a-zA-Z])ddot\ddot{[[0]]}rmAMatches a letter followed by "ddot", applies double dot formatting (second derivative).3
([a-zA-Z])dot\dot{[[0]]}rmAMatches a letter followed by "dot", applies dot formatting (used in derivatives).1
([a-zA-Z])vec\vec{[[0]]}rmAMatches a letter followed by "vec", applies vector formatting.
([a-zA-Z])tilde\tilde{[[0]]}rmAMatches a letter followed by "tilde", applies tilde formatting.
([a-zA-Z])und\underline{[[0]]}rmAMatches a letter followed by "und", applies underline formatting.

Trigonometric function

{trigger: "([^\\\\])(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot|csc)", replacement: "[[0|0]]\\[[1|1]]", options: "rmA"},

{trigger: "\\\\(arcsin|arccos|arctan|arccot|arccsc|arcsec|sin|cos|tan|cot|csc)([A-Za-gi-z])", replacement: "\\[[0|0]] [[1|1]]", options: "rmA"}, // Insert space after trig funcs. Skips letter "h" to allow sinh, cosh, etc.    

{trigger: "\\\\(arcsinh|arccosh|arctanh|arccoth|arcsch|arcsech|sinh|cosh|tanh|coth|csch)([A-Za-z])", replacement: "\\[[0|0]] [[1|1]]", options: "rmA"}, // Insert space after trig funcs
TriggerDescriptionExamples
arcsinInverse sine functionarcsin\arcsin
arccosInverse cosine functionarccos\arccos
arctanInverse tangent functionarctan\arctan
arccotInverse cotangent function\arccot
arccscInverse cosecant function\arccsc
arcsecInverse secant function\arcsec
sinSine functionsin\sin
cosCosine functioncos\cos
tanTangent functiontan\tan
cotCotangent functioncot\cot
cscCosecant functioncsc\csc
secSecant functionsec\sec
arcsinhInverse hyperbolic sine function\arcsinh
arccoshInverse hyperbolic cosine function\arccosh
arctanhInverse hyperbolic tangent function\arctanh
arccothInverse hyperbolic cotangent function\arccoth
arcschInverse hyperbolic cosecant function\arcsch
arcsechInverse hyperbolic secant function\arcsech
sinhHyperbolic sine functionsinh\sinh
coshHyperbolic cosine functioncosh\cosh
tanhHyperbolic tangent functiontanh\tanh
cothHyperbolic cotangent functioncoth\coth
cschHyperbolic cosecant function\csch
sechHyperbolic secant function\sech

Visual Operations

TriggerReplacementOptionsDescriptionExamples
U\underbrace{ ${VISUAL} }_{ $0 }mAApplies an underbrace to the matched content, with an optional label (subscript).VisualU\underbrace{ Visual }_{ U }
B\underset{ $0 }{ ${VISUAL} }mAApplies an underset to the matched content, with an optional label (subscript).VisualB\underset{ B }{ Visual }
C\cancel{ ${VISUAL} }mAApplies a cancellation mark (strike-through) to the matched content.Visual\cancel{ Visual }
K\cancelto{ $0 }{ ${VISUAL} }mAApplies a cancellation mark (strike-through) and points to a target, where $0 is the target value.\cancelto{ K }{ Visual }
S\sqrt{ ${VISUAL} }mAApplies a square root to the matched content.Visual\sqrt{ Visual }

Symbols

TriggerReplacementOptionsDescriptionExamples
ooo\inftymARepresents infinity symbol ().\infty
sum\summARepresents summation symbol (Σ).\sum
prod\prodmARepresents product symbol (Π).\prod
lim\lim_{ ${0:n} \\to ${1:\\infty} } $2mARepresents limit notation with customizable bounds and expression.limn\lim_{ n \to \infty }
([^\\\\])pm[[0]]\pmrmRepresents ± symbol, avoiding accidental escapes (like \pm).±\pm
([^\\\\])mp[[0]]\mprmRepresents ∓ symbol, avoiding accidental escapes.\mp
+-\pmmARepresents ± symbol.±\pm
-+\mpmARepresents ∓ symbol.\mp
...\dotsmARepresents ellipsis (three dots).\dots
v...\vdotsmARepresents vertical ellipsis (dots in a vertical line).\vdots
d...\ddotsmARepresents diagonal ellipsis (dots in a diagonal line).\ddots
c...\cdotsmARepresents centered ellipsis (dots in a horizontal line).\cdots
<->\leftrightarrowmARepresents a bi-directional arrow (↔).\leftrightarrow
->\tomARepresents a right arrow (→).\to
-->\RightarrowmARepresents implies symbol (⇒).\Rightarrow
<--\LeftarrowmARepresents reverse implies symbol (⇐).\Leftarrow
!>\mapstomARepresents a mapsto symbol (↦), typically used in functions.\mapsto
invs^{-1}mARepresents the inverse symbol (−1).1^{-1}
\\\\\setminusmARepresents the set difference symbol (\).fff\setminus f
\mid \mid\midmARepresents "mid" symbol (vertical bar) used in set notation.\mid
and\capmARepresents intersection symbol (∩).\cap
orr\cupmARepresents union symbol (∪).\cup
inn\inmARepresents "element of" symbol (∈).\in
notinn\notinmARepresents "not element of" symbol (∉).\notin
\subset eq\subseteqmARepresents "subset equal to" symbol (⊆).\subseteq
set\{ $0 \}$1mARepresents a set with elements enclosed in curly braces.{}\{ \}
=>\impliesmARepresents implies symbol (⇒).    \implies
=<\impliedbymARepresents reverse implies symbol (⇐).    \impliedby
iff\iffmARepresents "if and only if" symbol (⇔).    \iff
e\xi sts\existsmARepresents "there exists" symbol (∃).\exists
forall\forallmARepresents "for all" symbol (∀).\forall
===\equivmARepresents equivalence symbol (≡).\equiv
Sq\squaremARepresents square symbol (□), used in logic or proofs.\square
!=\neqmARepresents "not equal to" symbol (≠).\neq
.=\doteqmARepresents "approximately equal" symbol (≐).\doteq
doteq\doteqmARepresents "approximately equal" symbol (≐).\doteq
>=\geqmARepresents "greater than or equal to" symbol (≥).\geq
<=\leqmARepresents "less than or equal to" symbol (≤).\leq
>>\ggmARepresents "much greater than" symbol (≫).\gg
<<\llmARepresents "much less than" symbol (≪).\ll
lt\ltmARepresents "less than" symbol (<).<\lt
gt\gtmARepresents "greater than" symbol (>).>\gt
~~\simmARepresents "similar to" symbol (∼).\sim
~=\congmARepresents "congruent to" symbol (≅).\cong
cong\congmARepresents "congruent to" symbol (≅).\cong
~-\simeqmARepresents "almost equal to" symbol (≃).\simeq
\sim ~\approxmARepresents "approximately equal to" symbol (≈).\approx
prop\proptomARepresents "proportional to" symbol (∝).\propto
sse\subseteqmARepresents "subset equal to" symbol (⊆).\subseteq
sqs\sqsubseteqmARepresents "square subset equal to" symbol (⊑).\sqsubseteq
nabl\nablamARepresents the nabla symbol (∇), often used for gradients and vector calculus.\nabla
nabla\nablamARepresents the nabla symbol (∇), often used for gradients and vector calculus.
xx\timesmARepresents multiplication symbol (×).×\times
**\cdotmARepresents dot product symbol (⋅), often used for scalar multiplication.\cdot
para\parallelmARepresents parallel symbol (∥).\parallel
wedge\wedgemARepresents wedge symbol (∧), often used for logical "and".\wedge
TriggerReplacementOptionsDescriptionExamples
xnnx_{n}mARepresents x with subscript n.xnx_{n}
xiix_{i}mARepresents x with subscript i.xix_{i}
xjjx_{j}mARepresents x with subscript j.xjx_{j}
xp1x_{n+1}mARepresents x with subscript n+1.xn+1x_{n+1}
ynny_{n}mARepresents y with subscript n.yny_{n}
yiiy_{i}mARepresents y with subscript i.yiy_{i}
yjjy_{j}mARepresents y with subscript j.yjy_{j}
TriggerReplacementOptionsDescriptionExamples
mcal\mathcal{$0}$1mAApplies \mathcal{} to the input, typically for calligraphic letters.M\mathcal{M}
mbb\mathbb{$0}$1mAApplies \mathbb{} to the input, typically for blackboard bold letters.M\mathbb{M}
ell\ellmARepresents the lowercase script letter .\ell
lll\ellmARepresents the lowercase script letter , same as ell.\ell
LL\mathcal{L}mAApplies \mathcal{} to L for a calligraphic L.L\mathcal{L}
HH\mathcal{H}mAApplies \mathcal{} to H for a calligraphic H.H\mathcal{H}
CC\mathbb{C}mARepresents the blackboard bold C (), typically used for complex numbers.C\mathbb{C}
RR\mathbb{R}mARepresents the blackboard bold R (), typically used for real numbers.R\mathbb{R}
ZZ\mathbb{Z}mARepresents the blackboard bold Z (), typically used for integers.Z\mathbb{Z}
NN\mathbb{N}mARepresents the blackboard bold N (), typically used for natural numbers.N\mathbb{N}
II\mathbb{1}mARepresents the blackboard bold 1 (), often used as the identity matrix.1\mathbb{1}
\mathbb{1}I\hat{\mathbb{1}}mARepresents the identity matrix with a hat (often used in functional analysis).1^\hat{\mathbb{1}}
AA\mathcal{A}mAApplies \mathcal{} to A for a calligraphic A.A\mathcal{A}
BB\mathbf{B}mAApplies \mathbf{} to B for a bold B.B\mathbf{B}
EE\mathbf{E}mAApplies \mathbf{} to E for a bold E.E\mathbf{E}

Unit Vectors

TriggerReplacementOptionsDescriptionExamples
:i\mathbf{i}mARepresents the unit vector i in bold font.i\mathbf{i}
:j\mathbf{j}mARepresents the unit vector j in bold font.j\mathbf{j}
:k\mathbf{k}mARepresents the unit vector k in bold font.k\mathbf{k}
:x\hat{\mathbf{x}}mARepresents the unit vector x with a hat, in bold font.x^\hat{\mathbf{x}}
:y\hat{\mathbf{y}}mARepresents the unit vector y with a hat, in bold font.y^\hat{\mathbf{y}}
:z\hat{\mathbf{z}}mARepresents the unit vector z with a hat, in bold font.z^\hat{\mathbf{z}}

Derivatives

TriggerReplacementOptionsDescriptionExamples
partia\frac{ \partial ${0:y} }{ \partial ${1:x} } $2mRepresents the first partial derivative of y with respect to x.yx\frac{ \partial y }{ \partial x }
pa2\frac{ \partial^{2} ${0:y} }{ \partial ${1:x}^{2} } $2mARepresents the second partial derivative of y with respect to x.2yx2\frac{ \partial^{2} y }{ \partial x^{2} }
pa3\frac{ \partial^{3} ${0:y} }{ \partial ${1:x}^{3} } $2mARepresents the third partial derivative of y with respect to x.3yx3\frac{ \partial^{3} y }{ \partial x^{3} }
pa([A-Za-z])([A-Za-z])\frac{ \partial [[0]] }{ \partial [[1]] }rmRepresents a partial derivative of a variable with respect to another.yx\frac{ \partial y }{ \partial x }
pa([A-Za-z])([A-Za-z])([A-Za-z])\frac{ \partial^{2} [[0]] }{ \partial [[1]] \partial [[2]] }rmRepresents the second mixed partial derivative of variables.2yyx\frac{ \partial^{2} y }{ \partial y \partial x }
pa([A-Za-z])([A-Za-z])2\frac{ \partial^{2} [[0]] }{ \partial [[1]]^{2} }rmARepresents the second partial derivative of a variable with respect to itself.2yx2\frac{ \partial^{2} y }{ \partial x^{2} }
de([A-Za-z])([A-Za-z])\frac{ d[[0]] }{ d[[1]] }rmRepresents the derivative of [[0]] with respect to [[1]]dydx\frac{ dy }{ dx }
de([A-Za-z])([A-Za-z])2\frac{ d^{2}[[0]] }{ d[[1]]^{2} }rmARepresents the second derivative of [[0]] with respect to `[[11]]`.
ddt\frac{d}{dt}mARepresents the derivative with respect to time (dt).ddt\frac{d}{dt}
dd\frac{d ${0:y}}{d${1:x}} $2mRepresents a derivative of y with respect to x.dydx\frac{d y}{dx}
dd_{2}\frac{d^{2} ${0:y}}{d${1:x}^{2} $2mRepresents the second derivative of y with respect to x.d2ydx2\frac{d^{2} y}{dx^{2}}

Integrals

TriggerReplacementOptionsDescriptionExamples
oinf\int_{0}^{\infty} $0 \\, d${1:x} $2mARepresents a definite integral from 0 to infinity with respect to x.0dx\int_{0}^{\infty} \, dx
infi\int_{-\infty}^{\infty} $0 \\, d${1:x} $2mARepresents a definite integral from negative infinity to infinity with respect to x.dx\int_{-\infty}^{\infty} \, dx
dint\int_{${0:0}}^{${1:\\infty}} $2 \\, d${3:x} $4mARepresents a definite integral with custom limits and integrand.0dx\int_{0}^{\infty} \, dx
oint\ointmARepresents a contour integral (loop integral).\oint
iiint\iiintmARepresents a triple integral.\iiint
iint\iintmARepresents a double integral.\iint
int\int $0 d${1:x} $2mARepresents a simple integral with respect to x.dx\int dx

Quantum mechanics

TriggerReplacementOptionsDescriptionExamples
hba\hbarmARepresents the reduced Planck’s constant \hbar.\hbar
dag^{\dagger}mARepresents the Hermitian conjugate or dagger symbol ().^{\dagger}
o+\oplusmARepresents the direct sum operator ().\oplus
bigo+\bigoplusmARepresents the big direct sum operator (\bigoplus).\bigoplus
ox\otimesmARepresents the tensor product operator ().\otimes
ot\mathrm{Im}es\otimesmAHandles conflict with "im" snippet, represents the tensor product operator.\otimes
bra\bra{$0} $1mARepresents a bra vector (\langle \psi |) in quantum mechanics.ψ\bra{\psi}
ket\ket{$0} $1mARepresents a ket vector (| \psi \rangle) in quantum mechanics.ψ\ket{\psi}
brk\braket{ $0 | $1 } $2mARepresents a braket (inner product) <0|1>.01\braket{ 0 \mid 1 }
<>\braket{ $0 } $1mARepresents a braket with a single state <0>.0\braket{ 0 }
outp\ket{${0:\\psi}} \bra{${0:\\psi}} $1mARepresents a quantum state |ψ⟩⟨ψ|, a projection operator.ψψ\ket{\psi} \bra{\psi}

Environments

TriggerReplacementOptionsDescriptionExamples
pmat\begin{pmatrix}\n$0\n\end{pmatrix}mACreates a matrix with round brackets.(10)\begin{pmatrix}1\\0\end{pmatrix}
bmat\begin{bmatrix}\n$0\n\end{bmatrix}mACreates a matrix with square brackets.[10]\begin{bmatrix}1\\0\end{bmatrix}
Bmat\begin{Bmatrix}\n$0\n\end{Bmatrix}mACreates a matrix with double curly brackets.{10}\begin{Bmatrix}1\\0\end{Bmatrix}
vmat\begin{vmatrix}\n$0\n\end{vmatrix}mACreates a matrix with vertical bars (determinant symbol).10\begin{vmatrix}1\\0\end{vmatrix}
Vmat\begin{Vmatrix}\n$0\n\end{Vmatrix}mACreates a matrix with double vertical bars.10\begin{Vmatrix}1\\0\end{Vmatrix}
case\begin{cases}\n$0\n\end{cases}mACreates a piecewise function or set of cases.{10\begin{cases}1\\0\end{cases}
align\begin{align}\n$0\n\end{align}mAAligns equations for multi-line equations.\begin{align}1\\0\end{align}
array\begin{array}\n$0\n\end{array}mACreates a general array (without specific formatting like matrix).\begin{array}&1\\&0\end{array}
matrix\begin{matrix}\n$0\n\end{matrix}mACreates a matrix with no brackets or bars.1202\begin{matrix}1 &2 \\0 & 2\end{matrix}

Brackets

TriggerReplacementOptionsDescriptionExamples
avg\langle $0 \\rangle $1mACreates an average or expectation symbol.f\langle f\rangle
norm\lvert $0 \\rvert $1mACreates the norm of a value using vertical bars.f\lvert f \rvert
abs\lvert $0 \\rvert $1mACreates the absolute value using vertical bars.f\lvert f \rvert
mod| $0| $1mACreates the modulus or absolute value using vertical bars.f\mid f \mid
((${VISUAL})mAWraps the content with round brackets.(f)(f)
[[${VISUAL}]mAWraps the content with square brackets.[f][f]
{{${VISUAL}}mAWraps the content with curly brackets.f{f}
(($0)$1mAWraps the content with round brackets.(f)(f)
{{$0}$1mAWraps the content with curly brackets.f{f}
[[$0]$1mAWraps the content with square brackets.[1][1]
lr(\left( $0 \\right) $1mACreates left and right parentheses, adjusting size automatically.(fd)\left( \frac{f}{d} \right)
lr|\left|$0 \\right|$1mACreates left and right vertical bars, adjusting size automatically.
lr{\left\\{ $0 \\right\\} $1mACreates left and right curly braces, adjusting size automatically.{fd}\left\{ \frac{f}{d} \right\}
lr[\left[ $0 \\right] $1mACreates left and right square brackets, adjusting size automatically.[fd]\left[ \frac{f}{d} \right]
lra\left< $0 \\right> $1mACreates left and right angle brackets (inner product).<fd>\left< \frac{f}{d} \right>

Misc

TriggerReplacementOptionsDescriptionExamples
tayl${0:f}(${1:x} + ${2:h}) = ${0:f}(${1:x}) + ${0:f}'(${1:x})${2:h} + ${0:f}''(${1:x}) \\frac{${2:h}^{2}}{2!} + \\dots$3mAGenerates the Taylor series expansion of a function, using f(x + h) and its derivatives.f(x+h)=f(x)+f(x)h+f(x)h22!+f(x + h) = f(x) + f'(x)h + f''(x) \frac{h^{2}}{2!} + \dots
下一篇

Note for Lensed Gravitational Waves